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ABSTRACT 

Multiple optimization controls are associated with autonomous vehicles’ movement. 

These control systems are employed to enhance the comfort of passengers in commercial vehicles 

or to avoid enemy areas for unmanned military convoys. However, having multiple objectives for 

optimization can greatly enhance the perception and applicability of these algorithms. This paper 

involves demonstrating a multi-layered optimization framework which can achieve both and 

efficiently navigate autonomous vehicles. Other than the primary objective of reducing the 

probability of intersection crashes, minimizing individual vehicle delay and additionally 

minimizing energy consumption are the objectives of this example. Primarily this application 

consists of two parts: a multi-objective optimization framework and individual mathematical 

models that define vehicle parameters at intersections including vehicle dynamics model and 

vehicle energy consumption models. Such optimization framework could enhance driving 

algorithms of militarized convoys. Look-ahead controls would help them optimize both their 

distance as well as their energy consumption, thereby increasing convoy range and operational 

energy efficiency as well as decreasing costly convoy halts. 

 

INTRODUCTION 
Autonomous cars area is one of the fastest growing 

research segment in the transportation and automobile 

industry, one of the primary boosts to which is the Vehicle 

Infrastructure Integration that will let cars “talk” to each 

other and with road-side devices. In the United States, 

Connected Vehicle Program aims at bringing this 

connectivity by providing V2X (vehicle-to-vehicle or V2V 

and vehicle-to-infrastructure or V2I) communication and are 

being deployed for test purposes. Among the handful of 

connected vehicle/autonomous vehicle research, one of the 

systems proposed was an ICACC system which stands for 

Intersection Management using Cooperative Adaptive 

Cruise Control and aims at optimizing vehicle’s speed 

profiles to minimize delay and prevent crashes at 

intersections [1]. This research has shown potential fuel 

savings when delay is minimized and uses automated 

longitudinal control to replace conventional signal control to 

allow vehicles to time themselves to arrive at an intersection 

to pass safely. Another proposed system, Eco-Cooperative 

Adaptive Cruise Control (ECACC), aimed at optimizing 

vehicle’s speed profiles to minimize the fuel consumed by 

vehicles at an intersection [2]. It was shown that up to 30 

percent fuel can be saved using the optimized speed profile 

and uses path-finding algorithm based dynamic 

programming to find a least-fuel consumed path between 

two speed states. This research aims at bringing these 

optimization algorithms together by using a bi-level 

optimization framework to have a combined algorithm 

which optimizes the vehicle behavior at intersections for 

minimum delay and minimum energy use. The first layer 

uses delay optimization logic along with crash avoidance to 

time the vehicle arrivals at the stop-line. Secondly, fuel-

optimization logic generates a speed-profile for each vehicle 

for this arrival using dynamic programming. Preliminary 

analysis done using agent-based simulations revealed delay 

benefits of around 82 percent and fuel benefits of around 79 

percent compared to conventional intersections. This 

approach is presented as a use-case to multi-objective 

optimization techniques using individual and independent 

optimization algorithms. 
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BACKGROUND 
Specifically, the use-case defined in this paper optimizes 

vehicle movements through a traditional four-legged 

intersection to minimize delay and fuel consumption 

assuming that there is continuous data exchange between the 

vehicles about their instantaneous locations, speed and 

acceleration. This assumption is valid in the context of 

Connected Vehicle Program where vehicles continuously 

broadcast their “states” as Basic Safety Messages at deci-

second interval. In order to develop the proposed 

framework, the two independent algorithms for delay and 

fuel optimization used mathematically modeled vehicle 

parameters. This includes models which govern the vehicle’s 

speed and acceleration characteristics (vehicle dynamics 

model), models for vehicle’s energy and emissions 

calculations (fuel consumption models) along with other 

models for vehicle’s crash-avoidance and free-flow 

behavioral characteristics. These models are described in the 

following sub-sections. 

Optimization Models Used  
The delay minimization model is derived from [1] and uses 

a moving horizon optimization approach to modify vehicle 

arrivals at the stop-line and their arrival speeds. In principle, 

vehicles that are approaching an intersection from a distance 

will register with the optimization system which will in turn 

optimize their arrivals by adjusting their trajectories so that 

they arrive at the intersection with least delay and traverse 

the intersection without crashing. Full model description is 

given in Reference [1]. Eco-Speed Control model, proposed 

in [2] is used as the fuel minimization model in this paper. 

This model uses a modified A-star algorithm to modify 

trajectories of vehicles within the vicinity of an intersection 

to find the “least-cost” path of vehicles, which translates to 

minimum fuel consumption. The optimization framework is 

developed by comparing discretized upstream and 

downstream solution space using two control variables: 

deceleration (as a function of brake-pedal level) and 

acceleration (as a function of gas-pedal level). Full model 

description is given in Reference [2] 

Other Underlying Models 
The vehicle dynamics model uses vehicle-specific 

parameters to compute tractive and resistive forces acting on 

a moving vehicle and hence determines instantaneous 

possible acceleration and speed. In this approach, we use 

Rakha and Lucic vehicle dynamics model [3] to predict the 

maximum vehicle acceleration. It computes tractive forces 

based on vehicle power, gear ratios, driveline efficiency, 

roadway friction etc. and resistive forces based on 

aerodynamic, rolling and grade resistance forces. Specific 

equations pertaining to this model are available in [3]. 

VTCPFM (Virginia Tech Comprehensive Power-based Fuel 

Model defined in [4] is used as the fuel consumption model 

in this paper. This power-based fuel model utilizes 

instantaneous power as well as calibrated parameters from 

EPA cycles to compute instantaneous fuel consumption. Full 

description of the model is given in [4]. Vehicle behavioral 

models are used as part of the agent-based simulation 

framework that is used to assess the proposed algorithm and 

includes a car-following and crash-avoidance model. This 

research uses Rakha-Pasumarthy-Adjerid (RPA) vehicle 

longitudinal model [5] that includes a vehicle dynamics 

model for constraining vehicle accelerations, the Van Aerde 

steady-state car-following model and a collision avoidance 

model. The model doesn’t include a lane-changing model 

and therefore assumes no lane-changes. 

 

METHODOLOGY 
Specifically, the optimization framework presented in this 

paper aims at optimizing vehicle movements through an 

intersection using trajectory alterations. Instead of traditional 

signal-based systems, the vehicles are assumed to have 100 

percent connectivity to an intersection manager which 

performs trajectory alteration based on the optimization 

framework and controls the vehicles to follow this trajectory. 

The bi-level optimization framework is developed in a 

sequential optimization manner where firstly, the algorithm 

generates vehicle arrival times and intersection-entry speed 

for all vehicles by optimizing the delay and checking for 

crashes. Secondly, the algorithm generates a fuel-efficient 

speed profile for this particular set of constraints using 

dynamic programming. As in the underlying algorithms, we 

assume driving agents instead of human drivers to not 

consider human perception reaction behavior from the 

model. Figure 1 demonstrates the two levels of optimization 

in the framework. 

Level 1

Level 2

Simulation

Input

Delay Optimization/

Crash Avoidance
Base Case

Case-based 

trajectory 

generation

Fuel Optimization

Comparison

Test Case

Arrival Times & 

Speed Rules

 
Figure 1 – Bi-level Optimization Framework 

 

Firstly, the delay optimization module optimizes the 

vehicle profiles for minimum delay and crash avoidance 
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using the principles in [1]. This takes place in three steps as 

shown in Figure 2:  

i. All vehicles accelerate to the maximum speed at the 

first anchor point (upstream),  

ii. Then they incorporate the required delays to separate 

their arrival time at the stop-line by a safety interval (to 

avoid crashes), and 

iii. Accelerate back to maximum speed at the stop-line 

and proceed through the intersection.  

It has to be noted that the maximum speed of each vehicle 

passing through the intersection depends on their turn 

movement. Through vehicles will have a higher speed in the 

intersection that the turning vehicles. The result of this layer 

is a speed-profile that correspond to minimum delay and that 

prevents crash. However, as long as vehicles maintain its 

time of arrival at the stop-line and the speed of passing 

through the intersection, this delay is conserved. Hence these 

are the inputs to the next level. 

 
Figure 2 – Optimization Range and Optimization Actions. 

In the second level, a case-based trajectory generation is 

used to generate a fuel optimum profile to fit each vehicle. 

All vehicles are divided into two sets based on whether they 

accelerate or decelerate. The vehicles that need to 

incorporate a delay in its trajectory before reaching the stop-

line at maximum speed need to decelerate and then 

accelerate to the maximum speed and the ones that need not 

incorporate a delay will just accelerate to its maximum speed 

prior to stop-line. A dynamic programming based approach 

is used to optimize the trajectory for each of these cases. 

Specifically, a modified version of A-star path-finding 

algorithm is used to compute the trajectory corresponding to 

these constraints by defining the different states of the 

vehicle during its motion.  

Consider a vehicle whose speed-profile is to be optimized 

for a given initial speed, final speed (at stop-line) and the 

arrival time at the stop-line (as provided by the previous 

layer of optimization). Figure 2 shows the three states the 

vehicle has to pass through during its upstream motion: 

i. Initial State is defined at the initial speed of the vehicle 

when the optimization starts. 

ii. Interim State is defined at the first anchor point where 

the vehicle accelerates to the maximum speed before the 

delay injection occurs. 

iii. Final State is defined at the second anchor point (or the 

stop-line) when the vehicle is at its maximum speed. 

The time period for this state is defined by the delay 

optimization module. 

In addition to traveling through these states, the vehicle is 

subject to two physical constraints: (i) a fixed distance to be 

covered in the given arrival time at the stop-line and (ii) 

fixed final speed to be achieved at the end of the maneuver. 

The speed, time and position of these states are fixed. The 

optimized profile between these states is generated using the 

A-star algorithm while constrained by microscopic traffic 

flow models as defined previously. A-star algorithm uses a 

recursive path-finding logic in which the optimum state 

advances each time-step by selecting the state that 

correspond to least cost to reach that state plus a heuristic 

estimate of the future cost it will incur by taking that state. 

For example, if a vehicle has to accelerate from a speed 0 

km/h to 50 km/h, the speed chosen for each time-step is 

selected from the possible speeds by factoring the future fuel 

consumed resulting from the action for this time-step. 

 

ANALYSIS AND RESULTS 
In order to test the effectiveness of the proposed multi-

objective optimization algorithm, a generic four legged 

intersection was simulated for 8 different street volumes for 

the major and minor streets. Each approach had three lanes 

with dedicated left, through and right movements and a 

speed limit of 35 miles per hour. The simulation was done in 

a MATLAB environment with traffic flow models 

replicating INTEGRATION simulation software. In order to 

calibrate the vehicle models, characteristics of a 2010 Honda 

Civic was used.  
Table 1 - Physical Parameters of a 2010 Honda Civic 

Parameter Value 

Drag Coefficient (Cd) 0.30 

Frontal Area (m2) 2.32 

Engine Efficiency 0.92 

Percentage Mass on Tractive Axle 0.60 

Mass (kg) 1453 

Power (kW) 132 

The simulation analysis used three cases to simulate the 

eight volume scenarios. They are: (i) Non-optimum Case, 

where a normal signalized intersection was simulated, (ii) 1st 

Level Optimization Case, where only delay is optimized and 

(iii) 2nd Level Optimization Case, where the proposed multi-

objective optimization was simulated representing 

optimization of delay and fuel consumption. A fixed turn 

percentage of 20 percent to both left and right was used. 
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Maximum speed in the intersection is constrained by the turn 

movement for each vehicle with the through vehicles can 

pass at speed-limit and left and right turning vehicles pass at 

80 and 60 percent of the speed-limit. The cases were 

simulated in a customized agent-based model developed in 

MATLAB. 

Two measures of effectiveness (MOEs) were tested for 

each of these scenarios between the three cases - average 

delay per vehicle and average fuel consumed per vehicle. 

Since the arrival-times and speed-rules from first-level 

optimization (1) are used for the second-level optimization 

(2), the delay or travel-time values for those would be same. 

Hence only average fuel per vehicle is compared between 

these. Table 2 shows the simulation results for the three 

cases. It shows that the proposed multi-objective 

optimization cause an average fuel savings of around 79 

percent and average delay reduction of around 82 percent 

with respect to a non-optimum case (0). Average fuel 

savings of around 11 percent was found with respect to just 

optimizing the delay ((2) versus (1)). 
Table 2 – Simulation Results and Scenarios Analyzed. 

Scenario Major 

Volume 

(vph) 

Minor 

Volume 

(vph) 

Traditional Case 

(0) 

First Level 

Optimization (1) 

Second Level 

Optimization (2) 

Delay 

Savings 

Fuel Savings 

Avg 

Delay/ 

Veh (s) 

Avg 

Fuel/ 

Veh (l) 

Avg 

Delay/ 

Veh (s) 

Avg 

Fuel/ 

Veh (l) 

Avg 

Delay/ 

Veh (s) 

Avg 

Fuel/ 

Veh (l) 

(1) vs 

(0) 

(1) vs 

(0) 

(2) vs 

(1) 

1 600 300 11.8 0.085 1.2 0.0216 1.2 0.0193 89.83% 74.59% 10.65% 

2 800 400 13.4 0.094 2.1 0.022 2.1 0.0197 84.33% 76.60% 10.45% 

3 1000 500 14.1 0.09 2.7 0.0222 2.7 0.0199 80.85% 75.33% 10.36% 

4 1200 600 16.1 0.097 3.3 0.0225 3.3 0.0201 79.50% 76.80% 10.67% 

5 1400 700 15.7 0.094 3.7 0.0227 3.7 0.0204 76.43% 75.85% 10.13% 

6 1600 800 19.5 0.095 4.2 0.0229 4.2 0.0205 78.46% 75.89% 10.48% 

7 1800 900 21 0.097 5.2 0.0233 5.2 0.0206 75.24% 75.98% 11.59% 

8 2000 1000 26.4 0.098 4 0.0229 4 0.0204 84.85% 76.63% 10.92% 

            

Figure 3 shows the average fuel consumption per vehicle 

for all the three cases analyzed. As shown, there is 

considerable difference in fuel consumption between Case 0 

and Case 1 owing to the fact that there is considerable 

difference in average vehicle delay (Figure 4). The average 

value of reduction in fuel consumption per vehicle is around 

75 percent for Case 1 with respect to Case 0. Case 1 itself 

presents an optimized case of vehicle delay. Case 2 

optimizes the vehicle trajectory to conserve this delay and 

minimize fuel further. As shown, the additional level of 

optimization reduces the fuel consumption further by more 

than 10 percent. 

 
Figure 3 - Plots of Average Fuel Consumption Per Vehicle Under 

Different Cases and Scenarios. 

 
Figure 4 – Plot of Average Delay Incurred Per Vehicle Under 

Different Cases and Scenarios 

Figure 4 shows the average delay incurred per vehicle for 

all the three cases analyzed. As shown, Case 1 and Case 2 

provide same results in terms of average delay pertaining to 

the fact that Case 1 and Case 2 utilizes the same vehicle 

arrival times at the stop-line, thereby conserving delay in the 

2nd level of optimization. The overall reduction in delay was 

found to be between 75 and 90 percent.  

The multi-objective optimization was case-based and 

divided vehicle profiles according to whether there has to be 

a positive speed-change prior to the intersection or a 

negative speed-change. Negative speed-change indicates the 

cases in which the vehicles have to decelerate before they 

accelerate to the maximum possible speed in order to honor 
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the crash-avoidance constraint in the first level of 

optimization. Figure 5 shows the comparison of average fuel 

usage by vehicles in the cases where they have a positive 

speed-change or a negative speed change. The average 

reduction in the fuel usage for cases with positive speed 

change was 8.57 percent and for the cases with negative 

speed change was 11.59 percent. This trend was because the 

fuel-optimization algorithm has greater room to optimize 

when the speed-profile involves a deceleration and 

acceleration as supposed to when it has just acceleration.  

 

 

 
Figure 5 – Case-based analysis of fuel savings of multi-objective 

optimization. 

CONCLUSIONS 
The research presented in this paper provides a novel 

approach to multi-objective optimization using independent 

and individual optimization controls. An intersection 

management of vehicles that have automated longitudinal 

control tool was presented as use-case. The proposed 

algorithm works on two levels and aims at preventing 

crashes, minimizing overall delay at an intersection and 

minimizing the total fuel consumed at an intersection. At the 

first level, the algorithm generates vehicle arrival times at 

the stop-line along with an associated speed which 

corresponds to optimized delay and crash avoidance. In the 

second level, the algorithm generates a fuel-optimized 

velocity profile for vehicles to follow this constraint. The 

multi-objective optimization approach was able to save 

around 10 to 11 percent fuel over the delay-optimization 

approach. This is in addition to the 76 percent fuel it already 

saves over the non-optimum case. The proposed approach 

reduces the average delay by 82 percent when compared to 

non-optimum intersection control. Case-based analysis of 

vehicles that just accelerates prior to stop-line and that 

decelerates before acceleration to incorporate a delay shows 

that a vehicle that merely accelerates saves lesser fuel than 

the other. However, the absolute fuel usage by vehicles that 

accelerate is lesser than those which decelerates before 

accelerates. 

The multi-objective optimization tool presented and tested 

in this paper warrants further analysis to modify and test this 

approach. Such optimization framework could enhance 

driving algorithms of militarized convoys. Look-ahead 

controls would help them optimize both their distance as 

well as their energy consumption, thereby increasing convoy 

range and operational energy efficiency as well as 

decreasing costly convoy halts. 
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